A Comparison of Rates of Convergence of Two Inexact Proximal Point Algorithms
نویسنده
چکیده
We compare the linear rate of convergence estimates for two inexact proximal point methods. The first one is the classical inexact scheme introduced by Rockafellar, for which we obtain a slightly better estimate than the one given in [16]. The second one is the hybrid inexact proximal point approach introduced in [25, 22]. The advantage of the hybrid methods is that they use more constructive and less restrictive tolerance criteria in inexact solution of subproblems, while preserving all the favorable properties of the classical method, including global convergence and local linear rate of convergence under standard assumptions. In this paper, we obtain a linear convergence estimate for the hybrid algorithm [22], which is better than the one for the classical method [16], even if our improved estimate is used for the latter.
منابع مشابه
An inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملInexact and accelerated proximal point algorithms
We present inexact accelerated proximal point algorithms for minimizing a proper lower semicontinuous and convex function. We carry on a convergence analysis under different types of errors in the evaluation of the proximity operator, and we provide corresponding convergence rates for the objective function values. The proof relies on a generalization of the strategy proposed in [14] for genera...
متن کاملA Class of Inexact Variable Metric Proximal Point Algorithms
For the problem of solving maximal monotone inclusions, we present a rather general class of algorithms, which contains hybrid inexact proximal point methods as a special case and allows for the use of a variable metric in subproblems. The global convergence and local linear rate of convergence are established under standard assumptions. We demonstrate the advantage of variable metric implement...
متن کاملW-convergence of the proximal point algorithm in complete CAT(0) metric spaces
In this paper, we generalize the proximal point algorithm to complete CAT(0) spaces and show that the sequence generated by the proximal point algorithm $w$-converges to a zero of the maximal monotone operator. Also, we prove that if $f: Xrightarrow ]-infty, +infty]$ is a proper, convex and lower semicontinuous function on the complete CAT(0) space $X$, then the proximal...
متن کامل